

Panel PIR ALK

DESCRIPCIÓN

• Panel de espuma rígida de poliisocianurato (PIR) revestido por ambas caras con un complejo multicapa de aluminio.

APLICACIONES

• Aislamiento térmico de cubiertas tipo deck, como soporte de impermeabilización.

VENTAJAS

- Menor espesor de aislamiento gracias al bajo coeficiente de conductividad térmica de la espuma de poliisocianurato y al recubrimiento multicapa estanco.
- Elevada resistencia a la compresión.
- Prácticamente nula absorción de agua gracias a la estructura de celda cerrada del polímero.
- Paneles de gran rigidez y poco peso.
- Facilidad de manipulación y puesta en obra.

PRESENTACIÓN

- Paneles de 1200 x 600, 1200 x 1000 y 2500x1200mm.
- Espesores: 25, 30, 35, 40, 45, 50, 60, 70, 80, 85, 90, 100, 102, 104, 110, 120, 130, 140, 150 y 160mm.

CARACTERÍSTICAS

	CLASE según EN 13165	NORMA ENSAYO	UNIDADES	VALORES ESPECIFICADOS
Coeficiente conductividad térmica	λ i, (7d, 10°C)	EN 12667	W/m·K	0,0215
Coef. conductividad térmica declarado	λ D, 10°C	EN 12667	W/m·K	0,023
Resistencia a la compresión*	CS(10/Y)200	EN 826	kPa	250±50
Estabilidad dimensional 48h, 70°C, 90 %HR	DS(70,90)3	EN 1604	%	∆long, ∆anch. ≤2 ∆esp. ≤6
Absorción de agua	WL(T)1	EN 12087	%	≤ 1
Espesor	T2	EN 823	mm	e < 50 ±2 50 ≤ e ≤ 75 ±3 e >75 +5, -3
Reacción al fuego del producto	-	EN 13501-1	-	E
Reacción al fuego del producto en condición final de uso (únicamente para aplicación final cubierta deck)	-	EN 15715	-	30 ≤ e ≤ 120 B-s1, d0 120< e ≤ 160 B-s2, d0 Montaje normalizado n°3

^(*) Espesores inferiores o igual a 45 mm, la clase de resistencia a la compresión corresponde a CS(10/Y)175.

CARACTERÍSTICAS TÉRMICAS

Espesor (mm)	25	30	35	40	45	50	60	70	80
Resistencia térmica (m²·K/W)	1,10	1,30	1,50	1,75	1,95	2,20	2,65	3,05	3,50

Rev.16

Kingspan Insulation, S.A.U. se reserva el derecho a modificar el contenido de este documento en cualquier momento sin aviso previo.

Espesor (mm)	85	90	100	102	104	110	120	130	140	150	160
Resistencia térmica (m²·K/W)	3,70	3,95	4,40	4,50	4,60	4,85	5,30	5,75	6,15	6,60	7,05

Certificado ACERMI Nº 10/243/648 espesores 30-160mm.

INSTALACIÓN Y FIJACIONES

- Las planchas deben quedar sujetas a la estructura metálica mediante fijaciones adecuadas que se colocarán en las esquinas de la plancha a una distancia mínima de 100mm y máxima de 250mm del perímetro, según se muestra en las siguientes figuras. Las fijaciones deben asegurar una doble función: la de sujeción frente a las acciones de succión provocadas por el viento y la de estabilizar al conjunto aislante-impermeabilización frente a las variaciones térmicas que pueden producirse en una cubierta de este tipo.
- La plancha debe quedar totalmente sujeta, haciendo coincidir cada fijación con la parte superior de la greca del perfil metálico inferior.

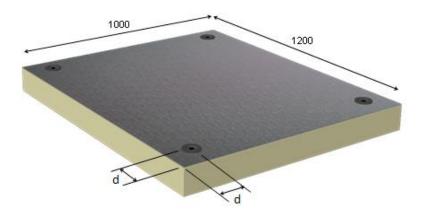


Figura 1. Planchas 1200x1000mm: 3,3 fijaciones/m².

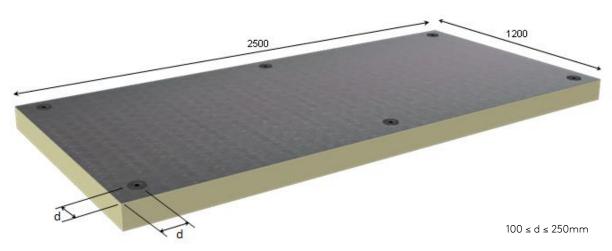


Figura 2. Planchas 2500x1200mm: 2 fijaciones/m².

